X線自由電子レーザー利用装置提案課題 研究報告書(平成 23 年度)

課題名 「物質のフェムト秒物理現象解析のためのX線散乱測定装置整備」

田中義人¹、西野吉則², Marcus Newton², 守友浩³, 伊藤基巳紀¹, 松原英一郎⁴

1理化学研究所・播磨研究所 放射光科学総合研究センター

²北海道大学電子科学研究所

³筑波大学数理物質科学研究科

4京都大学工学研究科

概要

ポンプ・プローブ法を用いたブラッグ反射配置でのフェムト秒時間分解コヒーレントX線 回折散乱測定装置整備のための試験的実験を実施した。半導体シリコン薄膜にSACLAのビ ームを縮小光学系の非対称反射配置で入射させることにより、ショットごとに薄膜の回折 パターンを得ることに成功した。ショットごとの強度のばらつきや、パターンの広がりに ついて解析し、X線散乱測定装置としての問題点および改善策を示し、大きな作動距離に 対応できるよう検出器支持台の整備を行った。

はじめに

フェムト秒時間分解X線散乱測定装置を整備するためには、SACLAの利用実験にとっての ビーム特性とその有効性を評価し、薄膜や微小結晶のコヒーレント散乱実験のデモを行う ことが重要である。本課題では、半導体単結晶薄膜試料を対象として、非対称反射配置に おける回折実験を行うために、SACLAの光子エネルギーを特定の波長に同調し、シングル ショット回折パターンを取得、その特性を調べた。他にも微小結晶やデータ処理方法につ いての打ち合わせや議論を行ったが、本報告書には、2011 年 10 月 14 に行われた試験利用 実験を中心に記す。

実験

実験はSACLAの実験ハッチ2で行われた。 厚さ 100 nm の Si 薄膜に対して非対称縮小 光学系を組み、反射角を 0.5°にするために、 SACLAの光子エネルギーを 8.69 keV に調整 した。今回は、電子ビームのエネルギーを 6.632GeV に調整することにより、調整が行 われた。図 1 は、SACLA のスペクトルであ る。

図1 SACLA のスペクトル分布

SACLA のビームを縦はねの回折ゴニオ に搭載された試料ホルダーに取り付けら れた Si 薄膜試料に導入し、この回折を MP-CCD にて検出した。図2は、回折計と 検出器の配置写真である。黄色い線が SACLA の入射ビームと回折方向を示して いる。 MP-CCD の画像サイズは縦50 mm, 横25 mm,で、画素サイズは50 ミクロン角 である。また、今回は、蛍光板が素子の前 にとりつけられたタイプのものが使用さ

図2 実験装置の配置と写真

れた。MP-CCD でのデータ取得は、SACLA のもつタイミング信号に同期した 60 Hz で行われた。SACLA の出力は 10 Hz であったため、データの取り出し時には、10 Hz の画像のみ対象とした。

結果

図3にシングルショットで得られた回折パターンを示す。SACLAの強度は、当時まだシ ョットごとに大きなばらつきをもったため、大きな強度のものを示した。回折強度のショ ットごとのばらつきを図4に示す。強度ゼロのショットは希少だが、強度の小さいところ で頻度が高いことがわかる。最大強度に対して、0.5以上のものは少ないが存在することか ら、検出器の飽和や損傷に注意が必要である。また、実際の応用実験では、パルス毎の強 度をモニターし、規格化する必要がある。

図3 シングルショット回折パターン

図3の縦方向のプロファイルがラウエ関数 となり、薄膜の厚み方向の形状を反映してい るので、その分布を図5に示す。中心の強度 ピークをゼロ次とすると、その左右にある1 次のフリンジが確認できる。

図4回折強度のショットごとのばらつき

図5 図3の縦方向のプロファイル

高次のフリンジ部分を含むプロファイ ル全体を調べるため、SACLA でのシング ルショットプロファイルを積算した。図 6(a)は100 ショット分積算したものである。 図 6(b)はそのブラッグスポット近傍を拡 大したものである。

考察と装置整備

比較のため、SPring-8 にて単色光X線で 取得したときのプロファイルを図 7(a)に 示す。SPring-8 では、スペクトルの分解能 が 10^4 程度(約 1 eV)であるため、SACLA と同様の 30 eV ほどのバンド幅のある場 合を想定したスペクトルを合成したもの を図 7(b)に示す。

図7(b)とSACLAで得た図6(b)の縦方向 のプロファイルを(図8(a))において、1次、 2次のフリンジを比較するとその鮮明度 に違いがあることがわかる。そこで、図 7(b)を、さらに角度方向に約0.03°ぼやけ (検出器上で100ミクロン弱)があると仮定 して合成した図と比較した。図8が比較 図である。また、フリンジのピーク強度 比も異なることもわかる。前者は、 SACLAのスペクトルのばらつきの再考 慮、検出系の回折角度分解能の向上を検 討する必要があると思われる。後者につ いては、強度の大きい信号が検出された ときのデータの線形性、各ショットでの S/N等を確認する必要があると思われる。

以上のことから、データの角度分解能 を向上させるために、検出器の動作距離 を数倍大きくできるよう、独立した架台 から立ち上げた検出器支持部品の整備 を行った。

図 6 100 ショット分のデータを積算したと きの画像プロファイル

図8図6の縦方向のプロファイル(a)と、図
7(b)のグラフにぼやけを仮定して合成したもの(b)との比較

まとめ

ポンプ・プローブ法を用いたブラッグ反射配置でのフェムト秒時間分解コヒーレントX 線回折散乱測定装置整備のための試験実験を2011年10月14日に実施した。半導体シリコ ンの薄膜にSACLAのビームを縮小光学系の非対称反射配置で入射させることにより、ショ ットごとに薄膜の回折パターンを得ることに成功した。ショットごとの強度のばらつきや、 パターンの広がりについて解析し、その問題点についての議論を行った。反射型X線散乱 測定装置の改善策として、作動距離の拡大を検討し、その支持台の整備を行った。

謝辞

本課題実施にあたり、XFEL 研究開発部門の皆様にはたいへんお世話になりました。ここに感謝いたします。