Reflection self-seeding at SACLA

Ichiro Inoue¹, Taito Osaka¹, Toru Hara¹, Takashi Tanaka¹, Takahiro Inagaki¹, Toru Fukui¹, Shunji Goto^{1,2}, Yuichi Inubushi^{1,2}, Hiroaki Kimura², Ryota Kinjo¹, Haruhiko Ohashi², Kazuaki Togawa¹, Kensuke Tono^{1,2}, Miteubiro Yamaga¹, Hitoahi Tanaka¹, Tatauwa Jabikawa¹, and Makina Yabashi^{1,2}

Mitsuhiro Yamaga¹, Hitoshi Tanaka¹, Tetsuya Ishikawa¹, and Makina Yabashi^{1,2}

SACLA Brief

¹RIKEN Spring-8 Center

²Japan Synchrotron Radiation Research Institute

Summary ed based on the SASE scheme, where spontaneous radiation originating from density modulations in the electron beam is amplified along periodic magnetic field in undulators. Although the SASE scheme is effective to produce intense X-ray beams, the stochastic startingup processes cause poor temporal coherence and a broad spectrum. Here, we present an efficient seeding scheme for producing narrowband XFEL beams; the SASE-XFEL beam in the first-half undulators is monochromatized via Bragg reflection of a silicon channel-cut crystal, and the monochromatic seed is amplified in the remaining undulators. We applied this scheme to SACLA, and produced nearly Fourier-transform-limited XFEL pulses, corresponding to an increase of spectral brightness by a factor of six with respect to the SASE-XFEL. This achievement will not only enhance the throughout of the present XFFL experiments but also open new opportunities of X-ray sciences.

Concept of reflection selfseeding

Purely mono-XFEL beam is delivered to downstream IDs

•No SASE contamination to the seed pulse

High extraction efficiency of mono-beam from SASE-FEL

(Seed power)	~3×10 ⁻² for reflection seeding (Si 111 channel cut)
Input SASE power)	\sim ~5×10 ⁻³ or less for transmission seeding (C400, 100 μ m)

cf. transmission self-seeding using thin diamond

LCLS: J. Amann *et al.*, Nature Photon. (2012). SACLA: T. Inagaki *et al.*, *Proc. FEL 2014*.

入射面倒

Channel-cut crystal with a gap of 90 µm

Properties of seeded-

10⁰

Seeded

Roadmap towards user

Statistics of beam properties

0.10

Let us know what kind of sciences do you want to perform with seeded-XFEL !!!

