Operation status of MPCCD detector systems at SACLA

<u>T. Kameshima^{1, 2}, K. Ozaki¹, S. Ono¹, O. Sugata¹, Y. Matsuda¹, Y. Inagaki¹, T. Tosue¹, K. Kobayashi^{1, 2},</u> Chih-Hsun Lin³, Ming-lee Chu³, N. Tanaka⁴, K. Kubo⁴, H, Murao⁴, D. Kosaka⁵, T. Imamura⁵, A. Iwata⁵, T. Hatsui^{1, 2} ¹RIKEN, ²JASRI, ³Academia Sinica, ⁴Meisei Electric, ⁵Univ. of Hyogo *Email: kameshima@spring8.or.jp*

Abstract

We present our six-year operation from 2011 to 2017 of the multi-port charge-coupled device (MPCCD) detector family at the X-ray Free-Electron Laser (XFEL) facility SACLA. We summarize the current performance with three types of sensors with 50 [1] and 300 micrometer thick MPCCDs, in combination with the first generation camera system [1] and upgraded compact camera system. Also, we show the deployed MPCCD variants and its integration details.

Sensor variants

Standard device

Epitaxial silicon Front illumination

ase III	Thicker device

- Bulk silicon
- **Back illumination**
- High gain type (Phase III-L) is also developed.

	Phase Ib	Phase IIIb	Phase III-L
Feature	Workhorse at SACLA for most of the experiments	Compromise on PSF	 Rare event detection Compromise on PSF
Image format	1024 x 512 pixels, 50 μm pixel front illuminated	1024 x 512 pixels, 50 μm pixel back illuminated	1024 x 512 pixels, 50 μm pixel back illuminated
Sensitive layer thickness	50 μm	300 μm	300 μm
ENC	110 ~ 180 e- r.m.s.	130 ~ 180 e- r.m.s.	32 ~ 47 e- r.m.s.
Phase I]	Phase III — Orig — Red	ginal construction Phase IIIb

First generation camera system

X217×Y50×Z15 [mm]

Compact camera system

Video Chain Board (VCB)

Proximity Readout Board (PRB)

Cross-talk

Issues in the Accuracy

- ✓ Cross-talk, Undershoot (serial)
- ✓ Cross-talk, Undershoot (parrallel)
- 60 fps operation
 - ✓ Significant accuracy degradation
- New needs
 - ✓ In-vacuum operation
 - \checkmark > 4 M pixel detector with 4-side butted sensor array

Weight, Power Dissipation, and Footprint reduced significantly. Power Dissipation is 29 W for a CCD, which contribute to the X-ray optics stability

Summary

- MPCCD operated for 6 years with successful scientific outcome at SACLA. Modular design enabled developments of 14 mechanical variants in short lead time.
- New detector circuit enabled 60 Hz operation and enhanced the data accuracy.
- Integrated interlock to the several workhorse instruments were made detector with high availability.
- Only two detectors were damaged so far in 6 years.

References

[1] T. Kameshima et.al., Review of Scientific Instruments 85, 033110 (2014). [2] References in the review, T. Hatsui and H. Graafsma IUCrJ, Vol. 2, p. 371 (2015). [3] Publications can be found at http://xfel.riken.jp/eng/research/indexnne.html